Accuracy Enhanced Stability and Structure Preserving Model Reduction Technique for Dynamical Systems with Second Order Structure
نویسندگان
چکیده
A method for model reduction of dynamical systems with the second order structure is proposed in this paper. The proposed technique preserves the second order structure of the system, and also preserves the stability of the original systems. The method uses the controllability and observability gramians within the time interval to build the appropriate Petrov-Galerkin projection for dynamical systems within the time interval of interest. The bound on approximation error is also derived. The numerical results are compared with the counterparts from other techniques. The results confirm that the method is more accurate than the previous counterparts.
منابع مشابه
Stability Analysis of the Two-level Orthogonal Arnoldi Procedure
The second-order Arnoldi (SOAR) procedure is an algorithm for computing an orthonormal basis of the second-order Krylov subspace. It has found applications in solving quadratic eigenvalue problems and model order reduction of second-order dynamical systems among others. Unfortunately, the SOAR procedure can be numerically unstable. The two-level orthogonal Arnoldi (TOAR) procedure has been prop...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملStructure-Preserving Model Reduction
A general framework for structure-preserving model reduction by Krylov subspace projection methods is developed. The goal is to preserve any substructures of importance in the matrices L, G, C, B that define the model prescribed by transfer function H(s) = L∗(G+sC)−1B. Many existing structure-preserving model-order reduction methods for linear and second-order dynamical systems can be derived u...
متن کاملStructure-preserving Model Reduction Using a Krylov Subspace Projection Formulation∗
A general framework for structure-preserving model reduction by Krylov subspace projection methods is developed. It not only matches as many moments as possible but also preserves substructures of importance in the coefficient matrices L,G,C, and B that define a dynamical system prescribed by the transfer function of the form H(s)=L∗(G+sC)−1B. Many existing structurepreserving model-order reduc...
متن کاملStable model reduction: A Projection Approach for NONLiNeAr Systems in the more General Descriptor Form
The ability to generate accurate reduced-order models (ROMs) of nonlinear dynamical systems, such as analog circuits and micro-electro-mechanical systems (MEMS), is a crucial first step in the automatic design and optimization of such systems. One popular approach to model order reduction (MOR) of highly nonlinear systems employs trajectory-based methods, such as the piecewise-linear (PWL) appr...
متن کامل